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1. Introduction

There are several interesting possibilities in the dynamics of chiral gauge theories: fermion

number non-conservation due to chiral anomaly [1, 2], various realizations of the gauge

symmetry and global flavor symmetry [3, 4], the existence of massless composite fermions
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suggested by ’t Hooft’s anomaly matching condition [5] and so on. Unfortunately, very

little is known so far about the actual behavior of chiral gauge theories beyond perturbation

theory. It is desirable to develop a formulation to study the non-perturbative aspect of

chiral gauge theories.

Despite the well-known problem of the species doubling [6 – 9], lattice gauge theory

can now provide a framework for non-perturbative formulation of chiral gauge theories.

The clue to this development is the construction of local and gauge-covariant lattice Dirac

operators satisfying the Ginsparg-Wilson relation [10 – 15]. By this relation, it is possible to

realize an exact chiral symmetry on the lattice [16], without the species doubling problem.

It is also possible to introduce Weyl fermions on the lattice and this opens the possibility

to formulate anomaly-free chiral lattice gauge theories [17 – 29]. In the case of U(1) chiral

gauge theories, Lüscher [18] proved rigorously that it is possible to construct the fermion

path-integral measure which depends smoothly on the gauge field and fulfills the funda-

mental requirements such as locality, gauge-invariance and lattice symmetries. Although

it is believed that a chiral gauge theory is a difficult case for numerical simulations because

the effective action induced by Weyl fermions has a non-zero imaginary part, it would be

still interesting and even useful to develop a formulation of chiral lattice gauge theories

by which one can work out fermionic observables numerically as the functions of link field

with exact gauge invariance.1

In this article, we construct the SU(2) × U(1) chiral gauge theory of the Glashow-

Weinberg-Salam model on the lattice, keeping the exact gauge invariance. As in the case

of U(1) theories, we first formulate the reconstruction theorem which asserts that if there

exists a set of local currents satisfying cetain properties, it is possible to reconstruct the chi-

ral fermion measure which depends smoothly on the gauge field and fulfills the fundamental

requirements such as locality,2 gauge-invariance and lattice symmetries.3 We then give a

closed expression of the local currents (the fermion measure term) for the SU(2) × U(1)

chiral lattice gauge theory defined on the finite-volume lattice. Our construction covers all

SU(2) topological sectors with vanishing U(1) magnetic fluxes. This formulation provides

the first gauge-invariant and non-perturbative regularization of the electroweak theory,

which would be usable in both perturbative and non-perturbative analyses. In particular,

it would be usable for a description of the baryon number non-conservation.4

This article is organized as follows. In section 2, we introduce our lattice formulation

of the Glashow-Weinberg-Salam model at the classical level. In section 3, we define the

1In the above formulation of U(1) chiral lattice gauge theories [18], although the proof of the existence

of the fermion measure is constructive, the resulted formula of the fermion measure turns out to be rather

complicated for the case of the finite-volume lattice. It also relies on the results obtained in the infinite

lattice. Therefore it does not provide a formulation which is immediately usable for numerical applications.

See [33 – 35] for a simplified formulation toward a practical implementation.
2We adopt the generalized notion of locality on the lattice given in [15, 17, 18] for Dirac operators and

composite fields. See also [33] for the case of the finite volume lattice.
3The lattice symmetries mean translations, rotations, reflections and charge conjugation.
4In the continuum theory, there is no winding number associated with the abelian gauge fields in four

dimensions. Therefore, we believe that the construction in the SU(2) topological sectors with vanishing

U(1) magnetic fluxes would be sufficient for a description of the baryon number non-conservation.
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path-integral measure of chiral fermion fields and formulate the reconstruction theorem.

In section 4, we give an explicit formula of the local currents (the measure term) which

fulfills all the required properties for the reconstruction theorem. In section 5, we discuss

the measure term in the infinite volume limit. Section 6 is devoted to discussions.

2. The Glashow-Weinberg-Salam model on the lattice

In this section, we describe a construction of the Glashow-Weinberg-Salam model on the

lattice within the framework of chiral lattice gauge theories based on the lattice Dirac op-

erator satisfying the Ginsparg-Wilson relation [18, 19]. We assume a local, gauge-covariant

lattice Dirac operator D which satisfies the Ginsparg-Wilson relation. An explicit example

of such lattice Dirac operator is given by the overlap Dirac operator [11, 13], which was

derived from the overlap formalism [36 – 46].5 In this case, our formulation is equivalent

to the overlap formalism for chiral lattice gauge theories6 or the domain wall fermion ap-

proach [58, 59]. See [60] for the attempt to construct the standard model in the domain

wall fermion approach combined with the construction by Eichten and Preskill [61].7

2.1 SU(2) × U(1) Gauge fields

We consider the four-dimensional lattice of the finite size L and choose lattice units,

Γ =
{

x = (x1, x2, x3, x4) ∈ Z
4 | 0 ≤ xµ < L (µ = 1, 2, 3, 4)

}

. (2.1)

Adopting the compact formulation for U(1) lattice gauge theory, the SU(2) and U(1) gauge

fields on Γ may be represented through periodic link fields on the infinite lattice:

U (1)(x, µ) ∈ U(1), x ∈ Z
4, (2.2)

U (1)(x+ Lν̂, µ) = U (1)(x, µ) for all µ, ν, (2.3)

and

U (2)(x, µ) ∈ SU(2), x ∈ Z
4, (2.4)

U (2)(x+ Lν̂, µ) = U (2)(x, µ) for all µ, ν. (2.5)

We require the so-called admissibility condition on the gauge fields,

|Fµν(x)| < ǫ1, Fµν(x) ≡
1

i
lnP (1)(x, µ, ν) ∈ (−π, π], (2.6)

‖1 − P (2)(x, µ, ν)‖ < ǫ2, (2.7)

5The overlap formula was derived from the five-dimensional approach of domain wall fermion proposed

by Kaplan [47]. In the vector-like formalism of domain wall fermion [48 – 51], the local low energy effective

action of the chiral mode precisely reproduces the overlap Dirac operator [52 – 54].
6The overlap formalism gives a well-defined partition function of Weyl fermions on the lattice, which

nicely reproduces the fermion zero mode and the fermion-number violating observables (’t Hooft ver-

tices) [55 – 57]. The gauge-invariant construction by Lüscher [18] provides a procedure to fix the ambiguity

of the complex phase of the overlap formula in a gauge-invariant manner for anomaly-free U(1) chiral gauge

theories.
7See also [62 – 67] for the recent attempt to construct chiral gauge theories using mirror Ginsparg-Wilson

fermions with gauge- and chiral-invariant Yukawa couplings to the extra bosonic degrees of freedom, which

may be identified with the Higgs field or Wess-Zumino scalar field, and for related works.
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for all x, µ, ν, where the plaquette variables are defined by

P (i)(x, µ, ν) = U (i)(x, µ)U (i)(x+ µ̂, ν)U (i)(x+ ν̂, µ)−1U (i)(x, ν)−1 (i = 1, 2). (2.8)

This condition ensures that the overlap Dirac operator [11, 13] is a smooth and local

function of the gauge field if (Y ǫ1) < 1/30 and ǫ2 < 1/30, where Y is the hyper-charge of

the fermion on which the overlap Dirac operator acts [15].

To impose the admissibility condition dynamically, we adopt the following action for

the gauge fields:

SG =
1

g2
2

∑

x∈Γ

∑

µ,ν

tr{1 − P (2)(x, µ, ν)}
[

1 − tr{1 − P (2)(x, µ, ν)}/ǫ22

]−1

+
1

4g2
1

∑

x∈Γ

∑

µ,ν

[Fµν(x)]2
{

1 − [Fµν(x)]2 /ǫ21

}−1
. (2.9)

2.2 Quarks and leptons

Right- and left- handed Weyl fermions are introduced on the lattice based on the Ginsparg-

Wilson relation. Let us first consider a generic gauge groupG and a Dirac field ψ(x) coupled

to the gauge field U(x, µ) in a certain representaion R of G. Then we assume a local, gauge-

covariant lattice Dirac operator DL which acts on ψ(x) and satisfies the Ginsparg-Wilson

relation,

γ5DL +DLγ5 = 2DLγ5DL. (2.10)

The kernel of the lattice Dirac operator in finite volume, DL, may be represented through

the kernel of the lattice Dirac operator in infinite volume, D, as follows:

DL(x, y) = D(x, y) +
∑

n∈Z4,n 6=0

D(x, y + nL), (2.11)

where D(x, y) is defined with a periodic link field in infinite volume. We assume that

D(x, y) posseses the locality property given by

‖D(x, y)‖ ≤ C(1 + ‖x− y‖p) e−‖x−y‖/̺ (2.12)

for some constants ̺ > 0, C > 0 , p ≥ 0, where ̺ is the localization range of the lattice

Dirac operator.

Given such a lattice Dirac operator DL, one can introduce a chiral operator as

γ̂5 ≡ γ5(1 − 2DL), (γ̂5)
2 = I. (2.13)

Then, the right- and left-handed Weyl fermions in the representaion R of G can be defined

by the eigenstates of the chiral operator γ̂5 (and γ5 for the anti-fields). Namely,

ψ±(x) = P̂±ψ(x), ψ̄±(x) = ψ̄(x)P∓, (2.14)

where P̂± and P± are the chiral projection operators given by

P̂± =

(

1 ± γ̂5

2

)

, P± =

(

1 ± γ5

2

)

. (2.15)
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Now we consider quarks and leptons in the Glashow-Weinberg-Salam model. For

simplicity, we consider the first family. We adopt the convention for the normalization

of the hyper-charges such that the Nishijima-Gell-Mann relation reads Q = T3 + 1
6Y . To

describe the left-handed quarks and leptons, which are SU(2) doublets, we introduce a

left-handed fermion ψ−(x) with the index α(= 1, . . . , 4), each component of which couples

to the SU(2) × U(1) gauge field, U (2)(x, µ) ⊗ {U (1)(x, µ)}Yα , with the hyper-charge Yα (

Y1,2,3 = 1 and Y4 = −3). Namely,

ψ−(x) = t
(

q1−(x), q2−(x), q3−(x), l−(x)
)

. (2.16)

Similarly, to describe the right-handed quarks and leptons, which are SU(2) singlets, we

introduce a right-handed fermion ψ+(x) with the index β(= 1, . . . , 8), each component of

which couples to the U(1) gauge field, {U (1)(x, µ)}Yβ , with the hyper-charge Yβ (Y1,3,5 = 4,

Y2,4,6 = −2, Y7 = 0 and Y8 = −6). Namely,

ψ+(x) = t
(

u1
+(x), d1

+(x), u2
+(x), d2

+(x), u3
+(x), d3

+(x), ν+(x), e+(x)
)

. (2.17)

Then the action of quarks and leptons is given by

SF =
∑

x∈Γ

ψ̄−(x)DLψ−(x) +
∑

x∈Γ

ψ̄+(x)DLψ+(x). (2.18)

2.3 Higgs field and its Yukawa-couplings to quarks and leptons

Higgs field is a SU(2) doublet with the hyper-charge Yh = +6. The action of the Higgs

field may be given by

SH =
∑

x

[

∑

ν

(∇νφ(x))†∇νφ(x) +
λ

2

(

φ(x)†φ(x) − v2
)2

]

, (2.19)

where φ(x) couples to the gauge field U (2)(x, µ)⊗{U (1)(x, µ)}Yh and ∇ν is the SU(2)×U(1)

gauge-covariant difference operator. Yukawa couplings of the Higgs field to the quarks and

leptons may also be introduced as follows:8

SY =
∑

x

[

yu q̄
i
−(x)φ̃(x)ui

+(x) + y∗u ū
i
+(x)φ̃(x)†qi

−(x)

+yd q̄
i
−(x)φ(x)di

+(x) + y∗d d̄
i
+(x)φ(x)†qi

−(x)

+yl l̄−(x)φ(x)e+(x) + y∗l ē+(x)φ(x)†l−(x)
]

, (2.20)

where φ̃(x) is the SU(2) conjugate of φ(x).

Thus the total lattice action,

S = SG + SF + SH + SY , (2.21)

defines a classical theory of the Glashow-Weinberg-Salam model [30 – 32] on the lattice with

the first-family quarks and leptons. In this action, locality, gauge-invariance and lattice

8One may add the Dirac-type mass term for the neutrino,
P

x{yν l̄−(x)φ̃(x)ν+(x) +y∗
ν ν̄+(x)φ̃(x)†l−(x)}.

– 5 –
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symmetries such as translations and rotations are manifest. CP symmetry, however, is

not manifest even with the real Yukawa couplings. But it is possible to show that at

the quantum level both the partition function and the on-shell amplitudes respect the CP

symmetry [70 – 72, 68]. With the three families, then, the breaking of CP symmetry comes

from the Kobayashi-Maskawa phase [69] as in the continuum theory.

2.4 Topology of the SU(2) × U(1) gauge fields

The admissibility condition ensures that the overlap Dirac operator [11, 13] is a smooth

and local function of the gauge field [15]. Then, through the lattice Dirac operator DL,

it is possible to define a topological charge of the gauge fields [37, 38, 40, 12, 16]: for the

admissible SU(2) and U(1) gauge fields, one has

Q(i) = Trγ5(1 −DL)|U=U (i) =
∑

x∈Γ

tr {γ5(1 −DL)} (x, x)|U=U (i) (i = 1, 2), (2.22)

where DL(x, y) is the kernel of the lattice Dirac operator DL. For 0 < ǫ1 < π/3, the

admissible U(1) gauge fields can also be classified by the magnetic fluxes,

mµν =
1

2π

L−1
∑

s,t=0

Fµν(x+ sµ̂+ tν̂), (2.23)

which are integers independent of x. mµν is related to Q(1) by Q(1) = (1/2)
∑

µν m
2
µν [73].

Then the admissible SU(2) and U(1) gauge fields can be classified by the topological num-

bers Q2 and mµν , respectively.9 We denote the space of the admissible SU(2) gauge fields

with a given topological charge Q(2) by U(2)[Q] and the space of the admissible U(1) gauge

fields with a given magnetic fluxes mµν by U(1)[m].

3. Path-integral measure of the lattice Glashow-Weinberg-Salam model

In this section, we consider a construction of the path-integral measure of the quarks and

leptons in the lattice Glashow-Weinberg-Salam model.10 We will show that, as in the case

of the U(1) chiral gauge theories [18], it is possible to formulate a reconstruction theorem

of the fermion measure for the topological sectors of the admissible SU(2) × U(1) gauge

fields with vanishing U(1) magnetic fluxes. This reconstruction theorem asserts that if

there exist local currents which satisfy cetain properties, it is possible to reconstruct the

fermion measure which depends smoothly on the gauge field and fulfills the fundamental

requirements such as locality, gauge-invariance and lattice symmetries.

9Strictly speaking, the complete topological classification of the space of admissible SU(2) gauge fields

is not known yet. However, as we will see, our construction is valid for any SU(2) topological sectors, as

long as the U(1) magnetic flux vanishes identically.
10The path-integral measure of the SU(2) × U(1) gauge fields and Higgs field may be defined as usual.

– 6 –
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3.1 Path-integral measure of Quarks and Leptons

The path-integral measure of quark fields and lepton fields may be defined by the Grass-

mann integrations,

D[ψ+]D[ψ̄+]D[ψ−]D[ψ̄−] =
∏

j

dbj
∏

k

db̄k
∏

j

dcj
∏

k

dc̄k, (3.1)

where {bj , b̄k} and {cj , c̄k} are the Grassman coefficients in the expansion of the chiral

fields,

ψ+(x) =
∑

j

uj(x)bj , ψ̄+(x) =
∑

k

b̄kūk(x), (3.2)

ψ−(x) =
∑

j

vj(x)cj , ψ̄−(x) =
∑

k

c̄kv̄k(x), (3.3)

in terms of the chiral (orthonormal) bases defined by

P̂+uj(x) = uj(x), ūk(x)P− = ūk(x). (3.4)

P̂−vj(x) = vj(x), v̄k(x)P+ = v̄k(x). (3.5)

Since the projection operators P̂± depend on the gauge fields through D, the fermion

measure also depends on the gauge fields.

This gauge field dependence can be examined explicitly by considering the effective

action induced by the quarks and leptons,

Γeff = ln [det(v̄kDLvj) det(ūkDLuj)] . (3.6)

With respect to the variation of the gauge fields,

δηU
(1)(x, µ) = iη(1)

µ (x)U (1)(x, µ), (3.7)

δηU
(2)(x, µ) = iη(2)

µ (x)U (2)(x, µ), (η(2)
µ (x) ≡ ηa

µ(x)T a), (3.8)

the variation of the effective action Γeff is evaluated as

δηΓeff =Tr
{

δηDLP̂−D
−1
L P+

}

+Tr
{

δηDLP̂+D
−1
L P−

}

+
∑

j

(vj , δηvj) +
∑

j

(uj , δηuj). (3.9)

In particular, for the gauge transformations

η(1)
µ (x) = −∂µω(x), (3.10)

η(2)
µ (x) = −[∇µω]a(x)T a, (3.11)

it is given as

δωΓeff = i
∑

x∈Γ

ω(x) [tr{Y−γ5(1 −DL)(x, x)} − tr{Y+γ5(1 −DL)(x, x)}]

+i
∑

x∈Γ

ωa(x) tr{T aγ5(1 −DL)(x, x)}+
∑

j

(vj , δωvj) +
∑

j

(uj, δωuj), (3.12)

– 7 –
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where Y− = diag(1, 1, 1,−3) and Y+ = diag(4,−2, . . . , 0,−6).11

In this gauge-field dependence of the fermion measure, there is an ambiguity by a pure

phase factor, because any unitary transformations of the bases,

ũj(x) =
∑

l

ul(x)
(

Q+
−1

)

lj
, b̃j =

∑

l

(Q+)jl bl, (3.13)

ṽj(x) =
∑

l

vl(x)
(

Q−
−1

)

lj
, c̃j =

∑

l

(Q−)jl cl, (3.14)

induces a change of the measure by the pure phase factor detQ+ · detQ−. This ambiguity

should be fixed so that the measure fulfills the fundamental requirements such as locality,

gauge-invariance, integrability and lattice symmetries.

3.2 Gauge anomaly cancellations in the lattice Glashow-Weinberg-Salam model

We next examine the gauge anomaly cancellations in the lattice Glashow-Weinberg-Salam

model.

3.2.1 Pseudo reality of SU(2) and the absence of SU(2)3 gauge anomaly

We first consider the case where the U(1) link field is trivial. In the topological sectors

with vanishing U(1) magnetic flux, U(2)[Q] ⊗ U(1)[0], any admissible U(1) link field can be

continuously deformed to the trivial configuration, U (1)(x, µ) = 1. In this limit, only the

SU(2) gauge field couples to the left-handed fermion ψ−(x), which now consists of four

degenerate SU(2) doublets. By noting the pseudo reality of SU(2),

U (2)(x, µ)∗ = (iσ2)U
(2)(x, µ) (iσ2)

−1, (3.15)

and the charge- and γ5-conjugation properties of the lattice Dirac operator,

DL[U (2)∗] = C−1{DL[U (2)]}TC, DL[U (2)]† = γ5DL[U (2)]γ5, (3.16)

where C is the charge conjugation matrix satisfying CγµC
−1 = −γT

µ , one can infer that

DL[U (2)] = (γ5C
−1 ⊗ iσ2){DL[U (2)]}∗(Cγ5 ⊗ (iσ2)

−1). (3.17)

Then one may choose the basis vectors of the left-handed fermion ψ−(x)= t
(

q1−(x), q2−(x),

q3−(x), l−(x)
)

for any given SU(2) gauge field U (2)(x, µ) ∈ U(2)[Q] as follows:

q1−(x) =
∑

j

wj(x)c
1
j , (3.18)

q2−(x) =
∑

j

(

γ5C
−1 ⊗ iσ2

)

[wj(x)]
∗ c2j , (3.19)

q3−(x) =
∑

j

wj(x)c
3
j , (3.20)

l−(x) =
∑

j

(

γ5C
−1 ⊗ iσ2

)

[wj(x)]
∗ c4j , (3.21)

11Throughout this paper, Tr stands for the trace over the lattice index x (∈ Γ), the flavor indices α, β

and the spinor index. tr stands for the trace over the flavor and/or spinor indices only.

– 8 –
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where {wj(x)} is an arbitrarily chosen basis for a single left-handed SU(2) doublet. With

this choice of the basis, one can infer that the measure term vanishes identically and there-

fore the fermion measure is manifestly invariant under the SU(2) gauge transformation,

eqs. (3.8) and (3.11).

3.2.2 Cancellations of SU(2)2 × U(1) and U(1)3 gauge anomalies

When the U(1) link field is non-trivial in generic topological sectors, U(2)[Q]⊗U(1)[m], the

U(1) part of the gauge anomaly is given by

q
(1)
L (x) = tr{Y−γ5(1 −DL)(x, x)} − tr{Y+γ5(1 −DL)(x, x)}, (3.22)

where DL(x, y) is the finite-volume kernel of the lattice Dirac operator. It is topological in

the sense that
∑

x∈Γ

q
(1)
L (x) = integer,

∑

x∈Γ

δηq
(1)
L (x) = 0. (3.23)

Then the following lemma holds true concerning the cancellations of SU(2)2 × U(1) and

U(1)3 gauge anomalies:

Lemma 1. In the lattice Glashow-Weinberg-Salam model, the U(1) gauge anomaly has the

following form in sufficiently large volume L4:

q
(1)
L (x) = tr{Y−γ5(1 −DL)(x, x)}|U=U (2)

+
(

tr{Y 3
−} − tr{Y 3

+}
)

γ ǫµνλρFµν(x)Fλρ(x+ µ̂+ ν̂)

+∂∗µkµ(x), (3.24)

where γ is a constant independent of the gauge fields and kµ(x) is a local, gauge-invariant

current which can be constructed so that it transforms as an axial vector current under

the lattice symmetries. Moreover, since the hyper-charges of a single family of quarks and

leptons satisfy the anomaly cancellation conditions,

tr{Y−} = 0, (3.25)

tr{Y 3
−} − tr{Y 3

+} = 0, (3.26)

the cohomologically non-trivial part of the gauge anomaly cancels exactly at a finite lattice

spacing and the total U(1) gauge anomaly is cohomologically trivial:

q
(1)
L (x) = ∂∗µkµ(x). (3.27)

Proof. Given the topological property of the U(1) gauge anomaly, it is possible to apply

the cohomology-analysis developed for the U(1) case [17, 83, 73, 84] to the SU(2) × U(1)

case by regarding the SU(2) gauge field U (2)(x, µ) as a background.12 The result is given

12This trick was first used to show the gauge anomaly cancellation in the lattice Glashow-Weinberg-

Salam model [28] in the 4+2 dimensional approach to the cohomological analysis of non-abelian gauge

anomalies [19, 24, 85].
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by the following expression:

q
(1)
L (x) = tr{Y−γ5(1 −DL)(x, x)}|U=U (2)

+βµν(x)Fµν(x)

+
(

tr{Y 3
−} − tr{Y 3

+}
)

γ ǫµνλρFµν(x)Fλρ(x+ µ̂+ ν̂)

+∂∗µkµ(x), (3.28)

where γ is a constant independent of the gauge fields, which takes the value γ = 1
32π2

for the overlap Dirac operator [78], βµν(x) is a tensor field satisfying ∂∗µβµν(x) = 0 which

depends only on the SU(2) gauge field and kµ(x) is a local, gauge-invariant current which

can be constructed so that it transforms as the axial vector current under the lattice

symmetries. Moreover, taking into account the pseudo-scalar nature of q
(1)
L (x) under the

charge conjugation and the pseudo reality of SU(2), one has

q
(1)
L (x)

∣

∣

∣

U=U (2),U (1)∗
= q

(1)
L (x)

∣

∣

∣

U=U (2),U (1)
, (3.29)

which immediately implies that the second term in the r.h.s. of eq. (3.28) can be included

into the total-divergence term as

2βµν(x)Fµν(x) = ∂∗µ

[

kµ(x)|U=U (2),U (1)∗ − kµ(x)|U=U (2),U (1)

]

. (3.30)

We emphasize that this is the result of the U(1) gauge anomaly in finite volume, which

is obtained by combining the result in the infinite lattice [17, 83, 73] with the use of the

trick to regard the SU(2) gauge field U (2)(x, µ) as a background [28], and the result of the

analysis of the finite volume correction [84]. See also [33]. In fact, the local, gauge-invariant

current kµ(x) may be decomposed as

kµ(x) = k̄µ(x) + ∆kµ(x), (3.31)

where k̄µ(x) and ∆kµ(x) satisfy the anomalous conservation laws,

∂∗µkµ(x) = tr{Y−γ5(1 −D)(x, x)} − tr{Y+γ5(1 −D)(x, x)}

≡ q(1)(x), (3.32)

∂∗µ∆kµ(x) =
∑

n∈Z4,n 6=0

[tr{Y−γ5(1 −D)(x, x+ Ln)} − tr{Y+γ5(1 −D)(x, x+ Ln)}]

≡ r(x), (3.33)

respectively. k̄µ(x) is obtained as the solution of the cohomology-analysis [17, 83, 73]

applied to q(1)(x) in infinite volume, while ∆kµ(x) is the result of the analysis of the finite

volume correction [84] applied to r(x), both in the use of the trick to regard the SU(2)

gauge field U (2)(x, µ) as a background [28]. One can infer from eq. (2.12) that

|∆kµ(x)| ≤ C1 e−L/̺ (3.34)

for a constant C1 > 0 [84]. This result should be compared with the result obtained

from the 4+2 dimensional approach to the cohomological analysis of non-abelian gauge

anomalies [28], where only the solution in the infinite volume limit has been obtained so far.

– 10 –



J
H
E
P
0
5
(
2
0
0
8
)
0
9
5

3.2.3 Issue related to SU(2) global anomaly

When the U(1) link field is trivial in the topological sectors with vanishing U(1) magnetic

flux, U(2)[Q]⊗ U(1)[0], one can construct the fermion measure which is invariant under the

SU(2) gauge transformation, eqs. (3.8) and (3.11). However, there remains the issue related

to SU(2) global anomaly [75 – 77]. In the following sections, we will establish rigorously that

the lattice counterpart of the SU(2) global anomaly [75 – 77] is absent in the topological

sectors with vanishing U(1) magnetic flux, U(2)[Q] ⊗ U(1)[0].

3.3 Reconstruction theorem of the fermion measure

We now formulate the reconstruction theorem of the fermion measure in the lattice

Glashow-Weinberg-Salam model. The properties of the fermion measure can be char-

acterized by the so-called measure term which is given in terms of the chiral basis and its

variation with respect to the gauge fields as

Lη = i
∑

j

(vj , δηvj) + i
∑

j

(uj , δηuj). (3.35)

Similar to the case of U(1) chiral lattice gauge theories [18], one can establish the following

theorem.

Theorem. In the topological sectors with vanishing U(1) magnetic flux, U(2)[Q]⊗U(1)[0], if

there exist local currents jaµ(x)(a = 1, 2, 3), jµ(x) which satisfy the following four properties,

it is possible to reconstruct the fermion measure (the bases {uj(x)}, {vj(x)}) which depends

smoothly on the gauge fields and fulfills the fundamental requirements such as locality,

gauge-invariance, integrability and lattice symmetries:

1. jaµ(x), jµ(x) are defined for all admissible SU(2) × U(1) gauge fields in the given

topological sectors and depends smoothly on the link variables.

2. jaµ(x) and jµ(x) are gauge-covariant and -invariant, respectively and both transform

as axial vector currents under the lattice symmetries.

3. The linear functional Lη =
∑

x∈Γ{η
a
µ(x)jaµ(x) + ηµ(x)jµ(x)} is a solution of the inte-

grability condition

δηLζ − δζLη + L[η,ζ] = iTr
{

P̂−[δηP̂−, δζ P̂−]
}

+ iTr
{

P̂+[δηP̂+, δζ P̂+]
}

(3.36)

for all periodic variations ηa
µ(x), ηµ(x) and ζa

µ(x), ζµ(x).

4. The anomalous conservation laws hold:

{∇∗
µjµ}

a(x) = tr{T aγ5(1 −D)(x, x)}, (3.37)

∂∗µjµ(x) = tr{Y−γ5(1 −DL)(x, x)} − tr{Y+γ5(1 −DL)(x, x)}, (3.38)

where Y− = diag(1, 1, 1,−3) and Y+ = diag(4,−2, . . . , 0,−6).
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A comment is in order about the topological aspects of the reconstrtuction theorem.

It is possible, as discussed in [18], to associate a U(1) bundle with the fermion measure.

In this point of view, the measure term, Lη defined by eq. (3.35), can be regarded as

the connection of the U(1) bundle, and the quantity which appears in the r.h.s. of the

integrability condition eq. (3.36),

Cηζ ≡ iTr
{

P̂−[δηP̂−, δζ P̂−]
}

+ iTr
{

P̂+[δηP̂+, δζ P̂+]
}

(3.39)

is nothing but the curvature of the connection,

Cηζ = δηLζ − δζLη + L[η,ζ]. (3.40)

It is known that the integration of the curvature of a U(1) bundle over any two-dimensional

closed surface in the base manifold takes value of the multiples of 2π. If one parametrize

a two-dimensional closed surface in the space of the admissible U(1) gauge fields by s, t ∈

[0, 2π], then one has

∫ 2π

0
ds

∫ 2π

0
dt

[

iTr
{

P̂−[∂sP̂−, ∂tP̂−]
}

+ iTr
{

P̂+[∂sP̂+, ∂tP̂+]
}]

= 2π × integer. (3.41)

If (and only if) the U(1) bundle is trivial, these integrals of the curvature vanishes iden-

tically. The integrability condition eq. (3.36) asserts that it is indeed the case and the

fermion measure is then smooth. The global integrability condition discussed in the next

subsection, on the other hand, asserts that the holonomy of the U(1) bundle is reproduced

by the ”Wilson line” of the connection.

3.4 Proof of the reconstruction theorem

3.4.1 Global integrability condition

As a first step to prove the reconstruction theorem, we formulate the so-called global

integrability condition [19].

Let us assume that currents jaµ(x)(a = 1, 2, 3) and jµ(x) are local and satisfy all four

properties required for the reconstruction theorem. We consider a definite topological

sector U(2)[Q] ⊗ U(1)[0] and choose an arbitrary reference field U
(2)
0 ⊗ U

(1)
0 in this sector.

Any other field U (2) ⊗U (1) in the same sector can then be reached through a smooth curve

Ut such that U1 = U (2) ⊗ U (1). Then the basis vectors of the fermion fields at the point

U (2) ⊗ U (1) may be chosen as follows [19]:

vj(x) =

{

Q1−v
0
1 W

−1 if j = 1,

Q1−v
0
j otherwise,

(3.42)

uj(x) = Q1+u
0
j , (3.43)

where W is defined by

W ≡ exp

{

i

∫ 1

0
dtLη

}

, ηµ(x) = i∂tUt(x, µ)Ut(x, µ)−1, (3.44)
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Q±t is defined by the evolution operator of the projector Pt± = P̂±

∣

∣

∣

U=Ut

satisfying

∂tQt± = [∂tPt±, Pt±]Qt±, Q0± = 1, (3.45)

and u0
j , v

0
j are the basis vectors for the reference link field at t = 0, U

(2)
0 ⊗ U

(1)
0 . The basis

is path-dependent and, in general, the fermion measure defined with this basis is also path-

dependent. In fact, any two curves Ut and Ũt define two different sets of the basis vectors,

(vj , uj) and (ṽj , ũj), and the unitary transformation relating them does not necessarily has

determinant 1. The fermion measure defined with the basis vectors is smooth if (and only

if) it holds ture for any closed curve Ut (t ∈ [0, 1];U1 = U0) in the space U(2)[Q]⊗U(1)[0] that

W = det(1 − P0− + P0−Q1−)det(1 − P0+ + P0+Q1+). (3.46)

This condition is referred as global integrability condition. The reconstruction theorem

follows from the global integrability condition.

If a given closed curve is contractible, the global integrability condition reduces to

eq. (3.36), the local version of the integrability condition. Then, what is actually required

by the global integrability condition is that eq. (3.46) holds true for any non-contractible

loops in the space U(2)[Q] ⊗ U(1)[0]. Moreover, with the smooth deformation of a given

non-contractible loop, the global integrability condition holds true. In particular, the base

point (the point at t = 0, 1) of a non-contractible loop may be chosen arbitrarily in the

given topological sector U(2)[Q] ⊗ U(1)[0]. Then, one may choose U0 = U (2) ⊗ 1 with a

certain SU(2) link field in U(2)[Q] as the base point of non-contractible loops.

3.4.2 Non-contractible loops in the space of SU(2) × U(1) gauge fields

Since U(2)[Q]⊗U(1)[0] is a direct product space, any non-contractible loop in U(2)[Q]⊗U(1)[0]

may be deformed to the product of the loops in U(2)[Q] and U(1)[0], respectively. Namely,

one may assume that a non-contractible loop in U(2)[Q] ⊗ U(1)[0] has the following form

(without loss of generality):

Ut =

{

U
(2)
t ⊗ 1 (0 ≤ t ≤ 1;U

(2)
1 = U

(2)
0 = U (2)),

U (2) ⊗ U
(1)
t (1 ≤ t ≤ 2;U

(1)
1 = U

(1)
2 = 1),

(3.47)

with a certain SU(2) link field U (2) in U(2)[Q]. Then, in order to prove the global integra-

bility condition, one may consider separately the following two cases, (1) non-contractible

loops in U(2)[Q] with the trivial U(1) link field as a background and (2) non-contactible

loops in U(1)[0] with an arbitrarily chosen SU(2) link field in U(2)[Q] as a background.

In order to identify non-contractible loops in the topological sectors U(2)[Q] ⊗ U(1)[0],

one needs to clarify the topological structure of the space of the admissible SU(2) × U(1)

gauge fields.

As to the admissible U(1) gauge fields, it has been shown in [18] that the topological

structure of U(1)[m] is a (4 + L4 − 1)-dimensional torus times a contractible space. Any

admissible U(1) gauge field in a given topological sector U(1)[m] can be expressed as

U (1)(x, µ) = Ũ (1)(x, µ)V[m](x, µ), (3.48)
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where

V[m](x, µ) = e−
2πi

L2 [Lδx̃µ,L−1
P

ν>µ mµν x̃ν+
P

ν<µ mµν x̃ν]. (3.49)

Here the abbreviation x̃µ = xµ mod L has been used. V[m](x, µ) has the constant field

tensor equal to 2πmµν/L
2(< ǫ1) and may be regarded as a reference field of U(1)[m]. Then

Ũ (1)(x, µ) stands for the dynamical degrees of freedom in the given topological sector. It

can be parametrized with the three degrees of freedom:

Ũ (1)(x, µ) = Λ(x) eiAT
µ (x) U[w](x, µ)Λ(x + µ̂)−1, (3.50)

where AT
µ (x) is the transverse vector potential satisfying

∂∗µA
T
µ (x) = 0,

∑

x∈Γ

AT
µ (x) = 0, (3.51)

∂µA
T
ν (x) − ∂νA

T
µ (x) + 2πmµν/L

2 = Fµν(x). (3.52)

U[w](x, µ) represents the degrees of freedom of the Wilson lines defined by

U[w](x, µ) =

{

wµ =
∏L−1

s=0 {Ũ
(1)(0 + sµ̂, µ) e−iAT

µ (0+sµ̂)} if xµ = L− 1,

1 otherwise,
(3.53)

and Λ(x) is the gauge function statisfying Λ(0) = 1. By this parametrization, one can see

that the space of the vector potentials AT
µ (x), denoted by A, is contactible, while the space

of the gauge functions Λ(x), denoted by G0, is (L4 − 1)-dimensional torus. Therefore, the

topological structure of U(1)[m] is a (4+L4−1)-dimensional torus times a contractible space:

U
(1)[m] ≃ U(1)4 × G0 × A. (3.54)

Then, one can see that there exist two kinds of non-contractible loops (0 ≤ t ≤ 1) in

U(1)[m]. The first one is the gauge loops given by

U
(1)
t (x, µ) = Λt(x)V[m](x, µ)Λt(x+ µ̂)−1, Λt(x) = exp{i2πtδx̃ỹ}. (3.55)

The second one is the non-gauge loops given by

U
(1)
t (x, µ) = V[m](x, µ) exp{i2πtδµνδx̃0}. (3.56)

On the other hand, the topological structure of the space of the admissible SU(2) gauge

fields, U(2)[Q], is not known so far [74]. But, as long as one considers only the topological

sectors with vanishing U(1) magnetic flux, U(2)[Q] ⊗ U(1)[0], one can establish the global

integrability condition without the knowledge, by virtue of the pseudo reality of SU(2).

3.4.3 SU(2) loops — use of the pseudo reality of SU(2) –

We first consider the case (1) non-contractible loops in U(2)[Q] with the trivial U(1) link field

as a background. When U (1)(x, µ) = 1, only the SU(2) gauge field couples to the left-handed

fermion ψ−(x), which now consists of four degenerate SU(2) doublets. By noting the
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pseudo reality of SU(2), and the charge- and γ5-conjugation properties of the lattice Dirac

operator, one may choose the basis vectors of the left-handed fermion ψ−(x)= t
(

q1−(x),

q2−(x), q3−(x), l−(x)
)

for any given SU(2) gauge field U (2)(x, µ) ∈ U(2)[Q] as given by

eqs. (3.18), (3.19), (3.20) and (3.21). With this choice of the basis, one can infer that the

measure term vanishes identically.

For any closed curve in the space U(2)[Q], U
(2)
t (x, µ) (t ∈ [0, 1]), one then has

W = 1. (3.57)

On the other hand, from the hermiticity of Pt−, the unitarity of Qt− and the charge

conjugation properties of Pt− and Qt−, it follows that

Pt− = (γ5C
−1 ⊗ iσ2){Pt−}

T (Cγ5 ⊗ (iσ2)
−1), (3.58)

Qt− = (γ5C
−1 ⊗ iσ2){Qt−

−1}T (Cγ5 ⊗ (iσ2)
−1). (3.59)

Then one can infer that

det(1 − P0− + P0−Q1−) = det
(

1 − P0− + P0−{Q1−}
−1

)

, (3.60)

or

det(1 − P0− + P0−Q1−) = ±1. (3.61)

Since ψ−(x) consists of four degenerate SU(2) doublets, Pt− and Qt− factorize as

Pt− =
4

∏

i=1

⊗P
(i)
t− , Qt− =

4
∏

i=1

⊗Q
(i)
t−, (3.62)

where P
(i)
t− and Q

(i)
t− (i = 1, 2, 3, 4) are the projection- and the evolution-operators for the

i-th component SU(2) doublet, respectively, and each set of the operators P
(i)
t− and Q

(i)
t−

satisfies the same identity as eq. (3.61). Therefore one obtains13

det(1 − P0− + P0−Q1−) =

4
∏

i=1

det
(

1 − P
(i)
0− + P

(i)
0−Q

(i)
1−

)

=
[

det
(

1 − P
(1)
0− + P

(1)
0−Q

(1)
1−

)]4

= 1. (3.63)

Thus the global integrability condition holds true for any closed curves in U(2)[Q] with the

trivial U(1) link field as a background.

The measure of the chiral fermion ψ−(x) can be defined globally within U(2)[Q] and

the lattice counterpart of the SU(2) global anomaly [75 – 77] is absent in this case.

13The right-handed fermion does not contribute the integrability condition in this case: det(1 − P0+ +

P0+Q1+) = 1.
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3.4.4 U(1) loops with SU(2) background

We next consider the case (2) non-contactible loops in U(1)[0] with an arbitrarily chosen

SU(2) link field in U(2)[Q] as a background.

For gauge loops, one has

Lη = tr{γ5(1 − aD)(y, y)}|
U (2)⊗U

(1)
t

, ηµ(x) = −i Ut(x, µ)−1∂tUt(x, µ) = −∂δx̃ỹ, (3.64)

where the SU(2) gauge field U (2)(x, µ) is chosen arbitrarily in U(2)[Q] and is fixed as a

background. Then the l.h.s. is evaluated as

W = exp{i2π[tr{Y−γ5(1 −DL)(y, y)} − tr{Y+γ5(1 −DL)(y, y)}]|t=0}. (3.65)

On the other hand, the factors in the r.h.s. are evaluated as

det{1 − P0± + P0±Q1±} = lim
n→∞

det
{

1 − P0± + (P0±Λ−1
∆tP0±)n

}

= exp {−i2πTr[ωY±P0±]} , (3.66)

where ∆t = 2π/n and ω(x) = δx̃ỹ and therefore

det{1 − P0− + P0−Q1−}det{1 − P0+ + P0+Q1+}

= exp {−i2πTr[ωY−P0−]} exp {−i2πTr[ωY+P0+]} = W. (3.67)

Thus the global integrability condition holds ture for the gauge loops.

For non-gauge loops, one has

Lη = 2πjν(0)|
U (2)⊗U

(1)
t

, ηµ(x)(ν) = −i U[w](x, µ)−1∂tνU[w](x, µ) = 2πδµνδx̃0, (3.68)

where again the SU(2) gauge field U (2)(x, µ) is chosen arbitrarily in U(2)[Q] and is fixed as

a background. Noting the charge conjugation properties of the U(1) measure term current

under the transformation, U[w] → U∗
[w], U

(2) → U (2)∗ = (iσ2)U
(2) (iσ2)

−1:

jµ(x)|U (1)∗, U (2) = +jµ(x)|U (1), U (2) , (3.69)

the l.h.s. can be evaluated as

W = exp

{

i

∫ 2π

0
dtjν(0)

}

= exp

{

i

∫ π

0
dtjν(0) − i

∫ −π

0
dtjν(0)

}

= 1 (3.70)

On the other hand, the r.h.s. can be evaluated as (n = 2r)

det{1 − P0± + P0±Q1±} = lim
n→∞

det
{

1 − P0± + P0±(C±)−1Pt1±C± · · · (C±)−1Ptr±C±

×Ptr−1±Ptr−2± · · ·Pt1±Pt0±

}

= det
{

1−P0±+P0±(C±)−1P0±

}

det
{

1−Pπ±+Pπ±(C±)−1Pπ±

}

where C+ =
(

γ5C
−1

)

and C− =
(

γ5C
−1 ⊗ iσ2

)

. Each factor in the final expression is ±1

because {C±}
2 = 1. The total expression is unity because, for the case of the right-handed

factor, all SU(2) singlets have even hyper-charges and, for the left-handed factor, all four

SU(2) doublets have odd hyper-charges. Thus the global integrability condition holds ture

for the non-gauge loops, too.

This completes the proof of the global integrability condition, and therefore, the re-

construction theorem.
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4. An explicit construction of the mesure term

In this section, we explicitly construct the local currents jaµ(x)(a = 1, 2, 3) and jµ(x) which

satisfy all the required properties for the reconstruction theorem in the topological sectors

U(2)[Q] ⊗ U(1)[0] with vanishing magnetic fluxes mµν = 0. We follow the approach in our

previous work for the U(1) case [35], extending the construction there to the case of the

SU(2) × U(1) chiral gauge theory.

4.1 Parametrization of U(1) link fields and their variations in finite volume

We fisrt discuss the parametrization of the link fields in finite volume and their variations.

We adopt the parametrization of the U(1) link fields given by eqs. (3.48) and (3.50). It is

unique and the each factors, AT
µ (x), U[w](x, µ) and Λ(x), may be regarded as the smooth

functionals of the original link field U (1)(x, µ).

Accordingly, the variation of the U(1) link field,

δηU
(1)(x, µ) = i ηµ(x)U (1)(x, µ), (4.1)

may be decomposed as follows:

ηµ(x) = ηT
µ (x) + ηµ[w](x) + ηΛ

µ (x). (4.2)

ηT
µ (x) is the transverse part of ηµ(x) defined by

∂∗µη
T
µ (x) = 0,

∑

x∈Γ

ηT
µ (x) = 0, (4.3)

which may be given explicitly as

ηT
µ (x) =

∑

y∈Γ

GL(x− y)∂∗λ(∂ληµ(x) − ∂µηλ(x)). (4.4)

ηµ[w](x) is the variation along the Wilson lines defined by

ηµ[w](x) =
∑

ν

η(ν) δµν δxν ,L−1, η(ν) = L−3
∑

y∈Γ

ην(y). (4.5)

ηΛ
µ (x) is the variation of the gauge degrees of freedom in the form,

ηΛ
µ (x) = −∂µωη(x), ωη(0) = 0. (4.6)

This decomposition is also unique by the following reason: for an arbitrary periodic vector

field ηµ(x), the vector field defined by aµ(x) = ηµ(x) − ηT
µ (x) − ηµ[w](x) has the vanishing

field tensor ∂µaν(x) − ∂νaµ(x) = 0 and the vanishing wilson lines
∑L−1

s=0 aµ(x + sµ̂) = 0.

Then, the sum ωη(x) of the vector field aµ(x) along any lattice path from x to the origin

x = 0 is independent of the chosen path, periodic in x and ωη(0) = 0. It gives the gauge

function which reproduces aµ(x) in the pure gauge form, aµ(x) = −∂µωη(x). This proves

the uniqueness of the decomposition. The action of the differential operator δη to each

factors, AT
µ (x), U[w](x, µ) and Λ(x), is then given as follows:

δηA
T
µ (x) = ηT

µ (x), (4.7)

δηU[w](x, µ) = i ηµ[w](x)U[w](x, µ), (4.8)

δηΛ(x) = i ωη(x)Λ(x). (4.9)
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4.2 A closed formula of the measure term in finite volume

We now give an explicit formula of the measure term for the admissible SU(2) ⊗ U(1)

gauge fields in the topological sectors U(2)[Q] ⊗ U(1)[0] with the vanishing magnetic fluxes

mµν = 0.14 For this purpose, we introduce a vector potential defined by

Ã′
µ(x) = AT

µ (x) −
1

i
∂µ [ln Λ(x)] ;

1

i
ln Λ(x) ∈ (−π, π], (4.10)

and choose a one-parameter family of the gauge fields as

Us(x, µ) = U (2)(x, µ) ⊗
[

eisÃ′
µ(x)U[w](x, µ)

]

, 0 ≤ s ≤ 1. (4.11)

Then we consider the linear functional of the variational parameters η
(2)
µ (x) and η

(1)
µ (x)

given by

L
⋄
η = i

∫ 1

0
dsTr

{

P̂−[∂sP̂−, δηP̂−]
}

+ i

∫ 1

0
dsTr

{

P̂+[∂sP̂+, δηP̂+]
}

+ δη

∫ 1

0
ds

∑

x∈Γ4

{

Ã′
µ(x) kµ(x)

}

+ Lη|U=U (2)⊗U[w]
, (4.12)

where kµ(x) is the gauge-invariant local current which satisfies ∂∗µkµ(x) = q
(1)
L (x) and

transforms as an axial vector field under the lattice symmetries. The additional term

Lη|U=U (2)⊗U[w]
is the measure term at the gauge fields U0(x, µ) = U (2)(x, µ) ⊗ U[w](x, µ),

which construction will be dicussed in the following section 4.3.

The currents ja⋄µ (x)(a = 1, 2, 3), j⋄µ(x) defined by eq. (4.12),

L
⋄
η =

∑

x∈Γ

{ηa
µ(x)ja⋄µ (x) + ηµ(x)j⋄µ(x)}, (4.13)

may be regarded as a functional of the link variable U(x, µ) through the dependences on

U (2)(x, µ), AT
µ (x), Λ(x) (ln Λ(x)) and U[w](x, µ). The action of the differential operator δη

to the vector potential Ã′
µ(x) is evaluated as

δηÃ
′
µ(x) = δηA

T
µ (x) − ∂µ

[

1

i
{δηΛ(x)}Λ(x)−1

]

= ηT
µ (x) − ∂µωη(x)

= ηµ(x) − ηµ[w](x), (4.14)

and the variation of Us(x, µ) is given by

δηUs(x, µ) = iη(2)
µ (x)U (2)(x, µ) ⊗

[

eisÃ′
µ(x)U[w](x, µ)

]

+U (2)(x, µ)⊗i
{

s(η(1)
µ (x)−ηµ[w](x))+ηµ[w](x)

}[

eisÃ′
µ(x)U[w](x, µ)

]

. (4.15)

14A general strategy to construct the SU(2) part of the measure term was discussed in [29]. We follow

this strategy, specifying explicitly the U(1) part of the measure term current jµ(x) and the interpolation

path in the U(1) direction.
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The linear functional L⋄
η so obtained, however, does not respect the lattice symmetries.

In order to make it to transform as a pseudo scalar field under the lattice symmetries, we

should average it over the lattice symmetries with the appropriate weights so as to project

to the pseudo scalar component. Namely, we take the average as follows:15

L̄
⋄
η =

1

244!

∑

R∈O(4,Z)

detR L
⋄
η|U→{U}R−1 ,ηµ→{ηµ}R−1 . (4.16)

Our main result is then stated as follows:

Lemma 2. The currents ja⋄µ (x)(a = 1, 2, 3), j⋄µ(x) defined by eq. (4.12),

L
⋄
η =

∑

x∈Γ

{ηa
µ(x)ja⋄µ (x) + ηµ(x)j⋄µ(x)},

fulfills all the properties required for the reconstruction theorem in the lattice Glashow-

Weinberg-Salam model except the transformation property under the lattice symmetries. It

may be corrected by invoking the average eq. (4.16) over the lattice symmetries with the

appropriate weights so as to project to the pseudo scalar component.

The proof of this statement will be given in section 4.4. The locality property of the

currents will be examined in section 4.5.

4.3 Measure term at U (2)(x, µ) ⊗ U[w](x, µ)

The measure term at the gauge fields U(x, µ) = U (2)(x, µ) ⊗ U[w](x, µ) should consist of

the two components:

Lη|U=U (2)⊗U[w]
=

{

Lη|U=U (2)⊗U[w];η=η[w]
for ηµ(x) = η

(1)
µ (x) = ηµ[w](x),

Lη|U=U (2)⊗U[w];η=η(2) for ηµ(x) = η
(2)
µ (x).

(4.17)

In order to construct the measure term at the gauge field U(x, µ) =

U (2)(x, µ) ⊗ U[w](x, µ) with the variational parameters in the directions of the U(1)

Wilson lines ηµ[w](x), we first discuss a special property of the curvature terms associated

with the U(1) Wilson lines U[w](x, µ), which turn out to be useful in the construction of

a solution to the integrability condition eq. (3.36). Let us parametrize the Wilson lines

U[w](x, µ) defined by eq. (3.53) as

wν = exp(itν), tν ∈ [0, 2π) (ν = 1, 2, 3, 4), (4.18)

and the variational parameters in the directions of the Wilson lines as

λµ(ν)(x) =
1

i
∂tνU[w](x, µ) · U[w](x, µ)−1 = δµνδxν ,L−1. (4.19)

15In doing the average, one should note the fact that under the lattice symmetries the Wil-

son lines U[w](x, µ) are transformed to other Wilson lines U[w′](x,µ) modulo gauge transformations,

{U[w](x, µ)}R−1

= U[w′](x, µ)Λ(x)Λ(x + µ̂)−1. Accordingly, the variational parameter ηµ[w](x) is trans-

formed as {ηµ[w](x)}R−1

= ηµ[w′](x) − ∂µω(x) with a certain periodic gauge funciton ω(x).
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The curvature term for the Wilson lines reads

[

iTr
{

P̂+[∂tµP̂+, ∂tν P̂+]
}

+ iTr
{

P̂−[∂tµP̂−, ∂tν P̂−]
}

]

U=U (2)⊗U[w]V[m]

≡ Cµν(t), (4.20)

where t = (t1, t2, t3, t4). Then the following lemma holds true:

Lemma 3. In the topological sectors U(2)[Q] ⊗ U(1)[m] of the lattice Glashow-Weinberg-

Salam model, the curvature term for the U(1) Wilson lines Cµν(t), which possesses the

properties

Cµν(t) = −Cνµ(t), ∂µCνλ(t) + ∂νCλµ(t) + ∂λCµν(t) = 0, (4.21)

satisfies the bound

|Cµν(t)| ≤ κLσe−L/̺ (4.22)

for certain positive constants κ and σ, while ̺ is the localization range of the lattice Dirac

operator D. For a sufficiently large volume L4, it then follows that

∫ 2π

0
dtµ

∫ 2π

0
dtν Cµν(t) = 0, (4.23)

and there exists smooth periodic vector field Wµ(t) such that

Cµν(t) = ∂µWν(t) − ∂νWµ(t), |Wµ(t)| ≤ 3π supt,µ,ν |Cµν(t)| . (4.24)

The proof of this lemma has been given for the U(1) case in [35], which holds true also

for the SU(2)⊗U(1) case here by regarding the SU(2) gauge field in the background. The

proof is based on the fact that in infinite-volume the periodic link field which represents

the degrees of freedom of the Wilson lines can be written in the pure-gauge form,

U[w](x, µ) = Λ[w](x)Λ[w](x+ µ̂)−1, Λ[w](x) =
∏

µ

(wµ)nµ for x− nL ∈ Γ, (4.25)

and therefore the gauge-invariant function of the link field in infinite volume is actually

independent of the degrees of freedom of the Wilson lines. In fact, noting the representation

eq. (2.11), one may rewrite the curvature term eq. (3.39) into

Cηζ = iTr
{

QΓP̂−[δηP̂−, δζ P̂−]
}

+ iTr
{

QΓP̂+[δηP̂+, δζ P̂−]
}

+ Rηζ , (4.26)

where QΓ here is the projector acting on the fields in infinite volume as

QΓ ψ(x) =

{

ψ(x) if x ∈ Γ,

0 otherwise.
(4.27)

Rηζ is the finite-volume correction to the curvature term given by

Rηζ = i
∑

s=∓

∑

x∈Γ

∑

y,z∈Z4

∑

n∈Z4,n 6=0

tr {Ps(x, y)

× [δηPs(y, z)δζPs(z, x+ Ln) − δζPs(y, z)δηPs(z, x+ Ln)]} , (4.28)
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while Ps(x, y)(s = ∓) are the kernels of the chiral projectors in infinite volume,

P∓(x, y) =
1

2
(1 ∓ γ5)δxy ±

1

2
γ5D(x, y). (4.29)

From eq. (2.12), one can infer that

|Rηζ | ≤ κ1L
ν1e−L/̺‖η‖∞‖ζ‖∞ (4.30)

for some constants κ1 > 0 and ν1 ≥ 0. We then recall the fact that there exists the measure

term in infinite volume [28], Kη =
∑

x∈Γ

{

ηa
µ(x)j⋆a

µ (x) + ηµ(x)j⋆µ(x)
}

, which satisfies the

integrability condition

iTr
{

QΓP̂−[δηP̂−, δζ P̂−]
}

+ iTr
{

QΓP̂+[δηP̂+, δζ P̂−]
}

= δηKζ − δζKη + K[η,ζ]. (4.31)

The currents j⋆a
µ (x) and j⋆µ(x) are defined for all admissible gauge fields in infinite

volume and it is local and gauge-invariant under the U(1) gauge transformations. (j⋆a
µ (x)

and j⋆µ(x) are gauge-covariant and gauge-invariant, respectively, under the SU(2) gauge

transformation.) Then, as discussed above, the currents are actually independent of

the Wilson lines and the curvature of Kη evaluated in the directions of the Wilson lines

vanishes identically. Namely,
[

δλ(µ)
Kλ(ν)

− δλ(ν)
Kλ(µ)

]

U=U (2)⊗U[w]V[m]

= iTr
{

QΓP̂−[δλ(µ)
P̂−, δλ(ν)

P̂−]
}

+ iTr
{

QΓP̂+[δλ(µ)
P̂+, δλ(ν)

P̂+]
}∣

∣

∣

U=U (2)⊗U[w]V[m]

= Cµν(t) − Rλ(µ)λ(ν)
= 0. (4.32)

This fact immediately implies that the curvature term for the Wilson lines, Cµν , itself

satisfies the bound eq. (4.22) and because of this bound, the two-dimensional integration

of the curvature, which should be a multiple of 2π, must vanish identically for a sufficiently

large L. The existence of the smooth periodic vector field Wµ(t) then follows from the

lemma 9.2 in [18].

By the above lemma, one can construct a solution of the integrability condition at the

gauge fields U(x, µ) = U (2)(x, µ) ⊗ U[w](x, µ),

δλ(µ)
Wν − δλ(ν)

Wµ = Cµν |U=U (2)⊗U[w]
, (4.33)

from Cµν directly. The solution may be given explicitly by the formulae,

W4 =
1

2π

∫ 2π

0
dr4

∫ (t1,t2,t3)

0
{dr1C14 + dr2C24 + dr3C34},

W3 =

∫ t4

0
dr4C43 −

t4
2π

∫ 2π

0
dr4C43 +

[

1

2π

∫ 2π

0
dr3

∫ (t1,t2)

0
{dr1C13 + dr2C23}

]

t4=0

,

W2 =

∫ t4

0
dr4C42 −

t4
2π

∫ 2π

0
dr4C42

+

[
∫ t3

0
dr3C32 −

t3
2π

∫ 2π

0
dr3C32

]

t4=0

+

[

1

2π

∫ 2π

0
dr2

∫ (t1)

0
{dr1C12}

]

t4=t3=0

,

– 21 –



J
H
E
P
0
5
(
2
0
0
8
)
0
9
5

W1 =

∫ t4

0
dr4C41 −

t4
2π

∫ 2π

0
dr4C41

+

[
∫ t3

0
dr3C31−

t3
2π

∫ 2π

0
dr3C31

]

t4=0

+

[
∫ t2

0
dr2C21−

t2
2π

∫ 2π

0
dr2C21

]

t4=t3=0

. (4.34)

It follows from the properties of Cµν that this solution is periodic and smooth with respect

to the Wilson lines U[w] and satisfies the bound

|Wµ | ≤ κ2L
ν1e−L/̺, (4.35)

for certain positive constants κ2 and ν2. It also follows that this solution is gauge invariant.

Then the linear functional of the variational parameters ηµ[w](x),
∑

ν η(ν)Wν , provides

the measure term at the gauge field U(x, µ) = U (2)(x, µ) ⊗ U[w](x, µ)V[m](x, µ) with the

variational parameters in the directions of the U(1) Wilson lines ηµ[w](x):

Lη|U=U (2)⊗U[w];η=η[w]
=

∑

ν

η(ν)Wν . (4.36)

On the other hand, the measure term at the gauge field U(x, µ) = U (2)(x, µ)⊗U[w](x, µ)

with the variational parameters in the directions of the SU(2) gauge fields may be given

by the following formulae:

Lη|U=U (2)⊗U[w];η=η(2) =

∫ t1

0
dr1 C1η(r1, 0, 0, 0) +

∫ t2

0
dr2 C2η(t1, r2, 0, 0)

+

∫ t3

0
dr3C3η(t1, t2, r3, 0)+

∫ t4

0
dr4C4η(t1, t2, t3, r4)−δηφ[w],(4.37)

and

φ[w] =

∫ (t1)

0
dr1 W1(r1, 0, 0, 0) +

∫ (t2)

0
dr2 W2(t1, r2, 0, 0)

+

∫ (t3)

0
dr3 W3(t1, t2, r3, 0) +

∫ (t4)

0
dr4 W4(t1, t2, t3, r4). (4.38)

It is not difficult to show that the measure term so constructed indeed satisfies the inte-

grability condition for all possible directions of the variational parameters. It also follows

from the properties of Cµν and Cµη(2) that the measure term current is gauge covariant

and is periodic and smooth with respect to the Wilson lines U[w](x, µ). To see the latter

property explicitly, one may rewrite the above formula as follows:

Lη|U=U (2)⊗U[w];η=η(2)

=

∫ t1

0
dr1 C1η(r1, 0, 0, 0)

+

∫ t2

0
dr2C2η(t1, r2, 0, 0)−

t2
2π

∫ 2π

0
dr2C2η(t1, r2, 0, 0)+

t2
2π

∫ 2π

0
dr2C2η(0, r2, 0, 0)

+

∫ t3

0
dr3C3η(t1, t2, r3, 0)−

t3
2π

∫ 2π

0
dr3C3η(t1, t2, r3, 0)+

t3
2π

∫ 2π

0
dr3C3η(0, 0, r3, 0)

+

∫ t4

0
dr4C4η(t1, t2, t3, r4)−

t4
2π

∫ 2π

0
dr4C4η(t1, t2, t3, r4)+

t4
2π

∫ 2π

0
dr4C4η(0, 0, 0, r4).
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Then, from the pseudo reality of SU(2) and the charge conjugation property of Cνη (ν =

1, 2, 3, 4),

Cνη|U=U (2)⊗{U
(1)
t }∗

= Cνη|U=U (2)⊗U
(1)
t

, (4.39)

one can infer that
∫ 2π

0
drν Cνη(0, . . . , rν , . . . , 0) =

∫ π

0
drν [Cνη(0, . . . , rν , . . . , 0) − Cνη(0, . . . ,−rν , . . . , 0)]

= 0 (ν = 1, 2, 3, 4). (4.40)

With these identities, one can easily verify that the measure term is periodic and smooth

with respect to the Wilson lines U[w](x, µ).

Finally, we note that the measure term Lη|U=U (2)⊗U[w]
so constructed satisfies the

bound
∣

∣

∣
Lη|U=U (2)⊗U[w]

∣

∣

∣
≤ κ′Lσ′

e−L/̺ ‖η‖∞ (4.41)

for certain positive constants κ′ and σ′. For ηµ(x) = ηµ[w](x), it immediately follows from

eq. (4.35). For ηµ(x) = η
(2)
µ (x), as one can see from the argument given in the proof of

the lemma 3 and eqs. (4.25) and (4.31), the curvature term Cηζ − Rηζ does not actually

depend on the U(1) Wilson lines. Then, one may write

Lη|U=U (2)⊗U[w];η=η(2) =

∫ t1

0
dr1 R1η(r1, 0, 0, 0)

+

∫ t2

0
dr2 R2η(t1, r2, 0, 0) −

t2
2π

∫ 2π

0
dr2R2η(t1, r2, 0, 0)

+

∫ t3

0
dr3 R3η(t1, t2, r3, 0) −

t3
2π

∫ 2π

0
dr3 R3η(t1, t2, r3, 0)

+

∫ t4

0
dr4 R4η(t1, t2, t3, r4) −

t4
2π

∫ 2π

0
dr4 R4η(t1, t2, t3, r4),

and the bound follows from eq. (4.30).

4.4 Proof of the lemma 2

We give a proof that the local currents, j⋄aµ (x) and j⋄µ(x), defined by eq. (4.12) satisfy all

the properties required for the reconstruction theorem. Although the proof is quite similar

to that of theorem 5.3 in [18], or that given in [35], we give it here for completeness.

1. Smoothness. By construction, j⋄aµ (x), j⋄µ(x) are defined for all admissible gauge fields

in U
(2)
Q ⊗U

(1)
[0] . It depends smoothly on the link fields U (2)(x, µ), Ã′

µ(x) and U[w](x, µ)

because P̂− and kµ are smooth functions of Us(x, µ). Although Ã′
µ(x) is not continu-

ous when Λ(x) = −1 at some points x because of the cut in ln Λ(x), its discontinuity

is always in the pure-gauge form

disc.{Ã′
µ(x)} = −∂µω(x); ω(0) = 0, (4.42)

where the gauge function ω(x) takes values that are integer multiples of 2π. Then,

any smooth functionals of Ã′
µ(x) are smooth with respect to the link field U (1)(x, µ),
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if they are gauge-invariant under the gauge transformations Ã′
µ(x) → Ã′

µ(x)+∂µω(x)

for arbitrary periodic gauge functions ω(x) satisfying ω(0) = 0. The currents j⋄aµ (x)

and j⋄µ(x) are indeed gauge-invariant under such gauge transformations. Namely, tak-

ing the gauge covariance of P̂−(x, y) and the gauge invariance of kµ(x) into account,

the change of L⋄
η under the gauge transformations

∫ 1

0
dsTr

{

P̂−

[

[ωY−, P̂−], δηP̂−

]}

+

∫ 1

0
dsTr

{

P̂+

[

[ωY+, P̂+], δηP̂+

]}

+

∫ 1

0
ds

∑

x∈Γ

∂µω(x)δη k̄µ(x)

= −

∫ 1

0
dsTr

{

ωY−δηP̂−

}

−

∫ 1

0
dsTr

{

ωY+δηP̂+

}

+

∫ 1

0
ds

∑

x∈Γ

∂µω(x)δηkµ(x)

=

∫ 1

0
ds

∑

x∈Γ

ω(x)δη
{

−tr{Y−γ5D}(x, x)+tr{Y+γ5D}(x, x)−∂∗µkµ(x)
}

=0, (4.43)

where the identity P̂±δηP̂±P̂± = 0 has been used.

2. Gauge invariance/covariance and symmetry properties. The gauge invariance of

j⋄aµ (x) and j⋄µ(x) under the U(1) gauge transformations has been shown above. The

transformation properties of j⋄aµ (x), j⋄µ(x) under the SU(2) gauge transformations

and the lattice symmetries are also evident from the transformation properties of

P̂−, kµ and Lη|U=U (2)⊗U[w]
.

3. Integrability condition. From the definition of L⋄
η, eq. (4.12), one finds immediately

that the second term does not contribute to the curvature δηL
⋄
ζ −δζL

⋄
η +L⋄

[η,ζ] and the

third term gives the curevature term at the gauge fields, U (2)(x, µ)⊗U[w](x, µ). Taking

the identity Tr
{

δ1P̂±δ2P̂±δ3P̂±

}

= 0 into account, the curvature is evaluated as

δηL
⋄
ζ−δζL

⋄
η+L

⋄
[η,ζ] = i

∫ 1

0
dsTr

{

P̂−[δη∂sP̂−, δζ P̂−] − P̂−[δζ∂sP̂−, δηP̂−]
}

(4.44)

+i

∫ 1

0
dsTr

{

P̂+[δη∂sP̂+, δζ P̂+] − P̂+[δζ∂sP̂+, δηP̂+]
}

+
[

iTr
{

P̂−[δηP̂−, δζ P̂−]
}

+iTr
{

P̂+[δηP̂+, δζ P̂+]
}]

∣

∣

∣

U=U (2)⊗U[w]

= i

∫ 1

0
ds ∂s

[

Tr
{

P̂−[δηP̂−, δζ P̂−]
}

+ Tr
{

P̂+[δηP̂+, δζ P̂+]
}]

+
[

iTr
{

P̂−[δηP̂−, δζ P̂−]
}

+iTr
{

P̂+[δηP̂+, δζ P̂+]
}]

∣

∣

∣

U=U (2)⊗U[w]

.

After the integration in the first term, the contributions from the lower end of the

integration range cancels with the second term, because the variational parameters

for the U(1) gauge field in this contribution is restricted to ηµ[w](x):

δη(1)Us(x, µ)Us(x, µ)−1|s=0 = [s(η(1)
µ (x) − ηµ[w](x)) + ηµ[w](x)]s=0 = ηµ[w](x). (4.45)
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4. Anomalous conservation law. If one sets η
(1)
µ (x) = −∂µω(x) (where ω(x) is any

lattice function on Γ), the left-hand side of eq. (4.12) becomes

∑

x∈Γ

ω(x) ∂∗µj
⋄
µ(x). (4.46)

On the other hand, using the identities

δηP̂± = is
[

ωY±, P̂±

]

, δηkµ(x) = 0, (4.47)

the right-hand side is evaluated as

−

∫ 1

0
ds sTr

{

ωY+ ∂sP̂+

}

−

∫ 1

0
ds sTr

{

ωY− ∂sP̂−

}

−

∫ 1

0
ds

∑

x∈Γ

∂µω(x) kµ(x)

=
∑

x∈Γ

ω(x) {tr{Y+γ5DL}(x, x) − tr{Y−γ5DL}(x, x)}

+

∫ 1

0
ds

∑

x∈Γ

ω(x)
{

−tr{Y+γ5DL}(x, x) + tr{Y+γ5DL}(x, x) + ∂∗µkµ(x)
}

=
∑

x∈Γ

ω(x) {−tr{Y+γ5(1 −DL)}(x, x) + tr{Y+γ5(1 −DL)}(x, x)} . (4.48)

Also, if one sets η
(2)
µ (x) = −∇µω(x), the left-hand side of eq. (4.12) becomes

∑

x∈Γ

ωa(x) {∇∗
µj

⋄
µ}

a(x). (4.49)

On the other hand, using the identities

δηP̂− = i
[

ω, P̂−

]

, δηkµ(x) = 0, (4.50)

the right-hand side is evaluated as

−

∫ 1

0
ds ∂s Tr

{

ωP̂−

}

+ Lη|U=U (2)⊗U[w];η
(2)
µ =−∇µω

= −
∑

x∈Γ

ωa(x) tr{T aγ5DL}(x, x)

+
∑

x∈Γ

ωa(x)
{

tr{T aγ5DL}(x, x) + {∇µj
⋄
µ}

a(x)
}

|U=U (2)⊗U[w]
. (4.51)

The last term vanishes identically if the anomalous conservation laws hold for the

measure term Lη|U=U (2)⊗U[w]
at the gauge fields U (2)(x, µ) ⊗ U[w](x, µ). This follows

from its definition eq. (4.37) by noting

Cνη(t)|η(2)
µ =−∇µω

= −∂tν Tr
{

ωP̂−

}

(t), δηφ[w]|η(2)
µ =−∇µω

= 0, (4.52)

and the fact that the SU(2) gauge anomaly tr{T aγ5(1 −DL)}(x, x) vanishes identi-

cally when the U(1) gauge field is trivial (t = 0) due to the pseudo reality of SU(2).
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4.5 Locality properties of the measure term currents

Finally, we examine the locality property of the measure term currents, j⋄aµ (x) and j⋄µ(x).

We follow the procedure to decompose the measure term eq. (4.12) into the part definable

in infinite volume and the part of the finite volume corrections. Namely, the measure term

eq. (4.12) may be decomposed as follows:

L
⋄
η = K

⋄
η + S

⋄
η, (4.53)

where

K
⋄
η = i

∫ 1

0
dsTr

{

QΓP̂−[∂sP̂−, δηP̂−]
}

+ i

∫ 1

0
dsTr

{

QΓP̂+[∂sP̂+, δηP̂+]
}

+δη

∫ 1

0
ds

∑

x∈Γ

{

Ã′
µ(x) k̄µ(x)

}

, (4.54)

S
⋄
η =

∫ 1

0
ds Rζη|ζµ=Ã′

µ

+δη

∫ 1

0
ds

∑

x∈Γ

{

Ã′
µ(x)∆kµ(x)

}

+ Lη|U=U (2)⊗U[w]
. (4.55)

From the bounds eqs. (3.34), (4.30) and eq. (4.41) and ‖AT
µ (x)‖ ≤ κ6L

4 (κ6 > 0) [18], one

can infer
∣

∣S
⋄
η

∣

∣ ≤ κ3L
ν3e−L/̺ ‖η‖∞ (4.56)

for some constants κ3 > 0, ν3 ≥ 0.

As to K⋄
η defined by eq. (4.54), if one introduces the truncated fields

ηn
µ(x) =

{

ηµ(x) if x− Ln ∈ Γ,

0 otherwise,
(4.57)

for any integer vector n, it may be rewritten into

K
⋄
η = i

∫ 1

0
dsTr

{

P−[∂sP−, δη0P−]
}

+ i

∫ 1

0
dsTr

{

P+[∂sP+δη0P+]
}

+

∫ 1

0
ds

∑

x∈Z4

{

(η(1)0
µ (x) − η0

µ[w](x)) k̄µ(x) + Ã′
µ(x) δη0 k̄µ(x)

}

. (4.58)

One can see from this expression that K⋄
η is defined in infinite volume for the variational

parameter with a compact support η0
µ(x). Then the following lemma holds ture:

Lemma 4. K⋄
η is in the form

K
⋄
η = L

⋆
η0 , (4.59)
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where L⋆
η is the linear functional defined in infinite volume for any variation parameter

ηµ(x) with a compact support given by

L
⋆
η = i

∫ 1

0
ds

[

Tr {P−[∂sP−, δηP−]} + Tr {P+[∂sP+, δηP+]}
]

Us=U (2)⊗ eisÃµ

+

∫ 1

0
ds

[

∑

x∈Z4

{

η(1)
µ (x) k̄µ(x) + Ãµ(x) δη k̄µ(x)

}]

Us=U (2)⊗ eisÃµ

≡
∑

x∈Z4

{ηa
µ(x)ja⋆

µ (x) + ηµ(x)j⋆µ(x)}. (4.60)

Ãµ(x) here is the vector potential (in infinite volume) which represents the U(1) link field

in the topological sector U(1)[0] (periodic in infinite volume), with the following properties,

U (1)(x, µ) = eiÃµ(x), |Ãµ(x)| ≤ π(1 + 4‖x‖),

Fµν(x) = ∂µÃν(x) − ∂νÃµ(x) (4.61)

and any other field with these properties is equal to Ãµ(x) + ∂µω(x), where the gauge

function ω(x) takes values that are integer multiples of 2π.

The proof of this lemma has been given for the U(1) case in our previous work [35]

and it applies to the SU(2) × U(1) case here simply by regarding the SU(2) link field as a

background. So we omit it here.

The currents ja⋆
µ (x) and j⋆µ(x) are quite similar in construction to j⋆µ(x) defined in [18]

for the U(1) case. In particular, they are invariant under the gauge transformations

Ãµ(x) → Ãµ(x)+∂µω(x) for arbitrary gauge functions ω(x) that are polynomially bounded

at infinity. Then, the locality property of ja⋆
µ (x) and j⋆µ(x) with respect to the U(1) link

field can be established by the same argument as that given in [18]. The locality property

with respect to the SU(2) link field follows from the locality property of the kernels of

projection operators P±(x, y) and the current k̄µ(x).

5. Measure term in infinite volume

We note that L⋆
η defined by eq. (4.60) provides the measure term of the lattice Glashow-

Weinberg-Salam model in infinite volume. This non-perturbative result should be com-

pared with the construction of the measure term in the weak coupling expansion [27]. One

can see through the weak coupling expansion of eq. (4.60) that the result of [27] is auto-

matically reproduced for the case of the SU(2)×U(1) chiral gauge theory. Thus it provides

a gauge-invariant lattice regularization of the Glashow-Weinberg-Salam model to all orders

of perturbation theory.

6. Discussion

In this paper, we have given a gauge-invariant and non-perturbative construction of the

Glashow-Weinberg-Salam model on the lattice, based on the lattice Dirac operator satis-

fying the Ginsparg-Wilson relation. We have shown that it is indeed possible to construct
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the fermion measure of quarks and leptons which depends smoothly on the SU(2) × U(1)

gauge fields and fulfills the fundamental requirements such as locality, gauge-invariance

and lattice symmetries in all SU(2) topological sectors with vanishing U(1) magnetic flux.

Then this construction would be usable for the studies of non-perturbative aspects of the

Glashow-Weinberg-Salam model, such as the baryon number non-conservation. However,

it is still desirable to extend our result in this paper to the topological sectors with non-

vanishing U(1) magnetic fluxes.

The measure term for the SU(2)×U(1) chiral gauge theory of the Glashow-Weinberg-

Salam model may be constructed by solving the local cohomology problem formulated in

4+2 dimensions for generic non-abelian gauge theories [19, 24, 85]. The problem has been

solved only in the infinite volume limit so far [28]. The measure term obtained in this

paper provides an explicit solution to the 4+2 dimensional local cohomology problem in

the finite volume for the topological sectors with vanishing U(1) magnetic fluxes.

As for the formulation in the infinite volume, one may adopt the non-compact formu-

lation for the U(1) gauge theory, as discussed by Neuberger in [23]. Even for this case, the

expression of the measure term given by eq. (4.60) holds true, if the vector potential there

is identified as the dynamical field variables in the non-compact U(1) formulation.

Towards a numerical application of the SU(2) × U(1) chiral lattice gauge theory of

the Glashow-Weinberg-Salam model, the next step is the practical implementation of the

formula of the chiral bases, eqs. (3.42)–(3.45): a computation of W and the implementation

of the operator Qt±. This question has been addressed partly for the U(1) case in our

previous works [34, 58, 59]. We will disscuss this question in detail elsewhere.
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[16] M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys.

Lett. B 428 (1998) 342 [hep-lat/9802011].
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